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Gol 'dsh t ik  [1] d i s c u s s e d  the p r o b l e m  of the in t e rac t ion  between a v o r t e x  and a plane in a v i s c o u s  l iquid 
and es t ab l i shed  tha t  a finite solut ion of  th is  p r o b l e m  ex i s t s  only at sma l l  Reynolds  n u m b e r s .  This  r e su l t  
has  been ana lyzed ,  f o r  example ,  in [2-7].  The p r e s e n t  a r t i c l e  is devoted to  an evalua t ion  of  [7], which  con-  
t a ins  the mos t  comple t e  ana ly t i ca l  r e su l t s .  In [7] the concept  of the solut ion was  c o n s i d e r a b l y  b roadened ,  
as  a r e s u l t  of  which the r e s u l t s  of  [1] w e r e  found to  be a pa r t i a l  ca se  of a b r o a d  c l a s s  of  so lu t ions ,  depend-  
ing on an a r b i t r a r y  p a r a m e t e r  and ex is t ing  with the a p p r o p r i a t e  choice  of  this  p a r a m e t e r ,  at any a r b i t r a r y  
Reynolds  n u m b e r s .  

The s t a t emen t  of the  p r o b l e m  cons i s t s  in the following: a solut ion is sought  to N a v i e r - S t o k e s  equa -  
t ions  of the f o r m  

F' (.) F (*) ~ (z) (i) 
VR - -  R , v~  ~ r ' vo - -  r 

w h e r e  VR, v a ,  v 0 a r e  the componen t s  of  the  ve loc i t y  v e c t o r  in a sphe r i ca l  s y s t e m  of coo rd ina t e s  (R, a ,  0); 
r =R  sin a ;  x = c o s  a ;  a is the az imutha l  angle.  (Here and in what  follows,  the notat ion of S e r r i n  [7] is 
used.)  A f t e r  subs t i tu t ion  of (1) into the N a v i e r - S t o k e s  equa t ions  is obtained a s y s t e m  of o r d i n a r y  d i f f e r -  
ent ia l  equa t ions  

v ( i  - -  x 2) F I ' y  - -  4 v x F ' "  - ~  F F ' "  + 3 F ' F "  = - -  2 D Q '  / (1  = x 2) (2) 

�9 ~ (i -- z 2) ~" + F~'  = o (3) 

where  v is the coeff ic ient  of k inemat i c  v i s cos i ty .  

F o r  th is  s y s t e m  of  the s ixth  o r d e r  f ive boundary  condi t ions  a re  imposed  

Q(o)=  F ( 0 ) = F ' ( 0 ) = 0 ,  ~ ( i ) ~ C ,  F ( l ) = 0  

By addi t ional  t r a n s f o r m a t i o n s  we obtain the s y s t e m  

f' + 12 = k2G (x) / (l -- z~) 2. (4) 

Q" + 2/~' = o (5) 

x i 

2 r t~2~dt , 9 ~ '  Q ~ d t  
G (~) = 2 (~ - -  ~) ~ ~ - :  _ 3 ~ - p (~ - ~) 

0 x 

(6) 

k = l / 2 v - * ,  F = 2 v ( t - - x  2) 1 
/ (o) = f~ (o), .q (1) = c (7) 

H e r e  P is a f r ee  p a r a m e t e r ,  whose  o r ig in  is bound up with the insuff ic ient  n u m b e r  of  bounda ry  condi -  
t ions  fo r  the s y s t e m  (2)-(3). 

In [1] the s t a t emen t  of  the p r o b l e m  conta ined no kind of  a r b i t r a r i n e s s .  Here ,  the r e q u i r e m e n t  fo r  the 
finite na tu re  of the longi tudinal  v e l o c i t y  v R at the v o r t i c a l  line (x = 1) was  used as  an insuff ic ient  condition.  
This  r e q u i r e m e n t  g e n e r a t e d  the fol lowing condi t ions:  F '  (1) is finite;  f (1) is finite;  G '  (1) =0. The l a t t e r  
equal i ty  d e t e r m i n e d  the p a r a m e t e r  P -- C 2. 
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The introduction of the pa r ame te r  P ,  broadening the c lass  of solutions, requi res  clarif icat ion of its 
physical  sense.  Therefore ,  it is advisable to clar i fy the consequence of the introduction of the a rb i t r a ry  
pa rame te r  P, and to furnish an interpretat ion of the resul ts  obtained. 

F i rs t  of all, with an a rb i t r a ry  value of P, the function v R becomes  infinite, having a logar i thmic d is-  
continuity [7] 

/~vR ~__ 1/~ (i -- P*) k* In (i -- z) -~ (8) 

Here P*  and k* are  normal ized values of P and k 

P =  C~P *, k* = [ C ] k 

It must be noted that a s imi lar  type of singular solutions for s e l f - s imi l a r  flows of type (1) is well 
known in the theory  of v iscous  jets. For  example, in [8] it is shown that the solution of L. D. Landau with 
respect  to a submerged jet becomes nonsingular.  However, the author of this ar t icle  assumes  that singular 
solutions do not have physical  meanings. The same kind of asser t ion  is made in [9, 10]. However, in the 
theory  of jets finite solutions exist  at any a rb i t r a ry  values of the pa rame te r s ,  while, for  the problem of a 
vortex,  the condition of boundedness is found to be too severe;  therefore ,  the use of unbounded solutions 
may turn out to be justified. 

However, if we assume that the pa rame te r  P is completely a rb i t ra ry ,  we obtain the resul t  that the 
motion of the liquid is conserved,  even with the disappearance of the vortex,  when C -* 0. Actually, this 
follows f rom [7], in which the following equation is discussed:  

f '  + / ~  = - p k ~  / ( i  - -  ~) ( t  + ~)~, / (o)  = o 

which follows f rom the sys tem (4)-(6) with ~2 ~- 0. It is established in [7] that this equation is solvable if 
Pk 2 < 8.2. We point out that in [7] this equation contains the factor  P*k .2, made up of normal ized p a r a m -  
eters;  however,  it can b e  replaced by the fac tor  Pk 2, since this product does not depend on C. 

Thus, an a rb i t r a ry  value of P cor responds  not to a "pure vor tex,"  but to its superposit ion on the flow 
of the liquid, which is induced by the longitudinal motion of an infinitely thin fi lament at an infinitely great  
velocity. In distinction f rom motion at a finite velocity, such a filament is found capable of entraining a 
v iscous  liquid. Under these c i rcumstances ,  still another finite momentum is introduced into the liquid, so 
that there  is obtained a still more  complex superposit ion of vortex,  Hfllament," and jet. 

Since this is so, it is c lear  that the additional sources  of the motion of the liquid demands the ass ign-  
ment of pa r ame te r s  determining thei r  intensity; for example,  in locating a l inear source or  sink at the axis 
of a vortex,  it is neces sa ry  to charac te r ize  its assigned strength. The choice of a type of singulari ty must 
be determined by a real  physical  problem which is such that the solution with singulari t ies  under cons idera-  
tion is asymptotic.  Specifically, an at tempt may be made to interpret  solution (1) to the problem of a vor tex 
as  asymptot ic  for the motion of a viscous liquid due to a rotat ing needle, when it d iameter  approaches zero,  
while its angular veloci ty increases  infinitely, so that the circulat ion remains  constant. It is c lear  that for 
such a model a singulari ty of the per ipheral  velocity, v0, remains  inherent. For  the other  components of the 
velocity, v R and va ,  the requirement  of boundedness is inherent, since it is in agreement  with the condi- 
tions for a l imiting transi t ion.  

In principle,  however, the development of an "induced" singulari ty as a resul t  of a l imiting transi t ion 
is not excluded. Therefore ,  while solutions of the problem with only "inherent" singulari t ies  do not exist, 
as occurs  in the case under consideration with large  Reynolds numbers ,  as a way out of the situation we can 
admit Of a combination of an induced singulari ty and the minimally possible intensity (minimal so that any 
excess  in it will cor respond to another real  model, in which this excess intensity is generated naturally 
as the resul t  of a l imiting transition).  The requirement  of a minimal singulari ty of the function v R permi ts  
choosing the pa rame te r  P, and finding more exactly the dependence of P*(k*), which can be determined as 
follows. With 0 < k < 2.86, P *  =1, since in this range there  exists a finite solution; with $.86 < k* <~o, a 
singular jet develops in the liquid near  the axis, and the dependence of P *(k*) should cor respond to the 
curve on Fig. 1 f rom [7], separat ing zone B f rom the region in which solutions do not exist. Such a choice 
was proposed in [7], but only for turbulent fiow With a self-adjust ing vir tual  viscosi ty.  The establishment 
of the dependence of P*(k*)  renders  the problem uniquely determined. However, for  this asser t ion  to hold, 
the singulari ty of the solution with fixed values of P * and k* must be proven. Such a proof  was obtained 
nei ther  in [1] nor in [7]. It is set out belovr for the case P*  =1 and those values of k* with which a solution 
exits. 

416 



F r o m  (5), a f t e r  i n t e g r a t i o n  we ob ta in  the  r e l a t i o n s h i p  
2r 

0 

(9) 

w h e r e  a i s  an i n t e g r a t i o n  cons t an t  s u b j e c t  to d e t e r m i n a t i o n  f r o m  the  cond i t ion  D(1) =C.  

We r e m o v e  t h i s  cond i t ion  and  s h a l l  a s s u m e  tha t  a = ~ ' (0 )  i s  a g iven  n u m b e r .  

A s  i s  shovcn in [1], 0 < a < C. L e t  US c o n s i d e r  the  s y s t e m  of  equa t i ons  (4), (6), (9). We s h a l l  show 
tha t ,  f o r  any  g iven  v a l u e  of  a fo r  which  t h i s  s y s t e m  is  s o l v a b l e  in the  i n t e r v a l  (0, 1), the  so lu t i on  i s  unique.  
We w r i t e  (6) in the  f o r m  

x 

G(x)=x 2 - A x - 2 t  (x--t)(l__(It~) e-ix) 
o 
1 

0 

~fdt ( 1 0 )  

With such  a de f in i t i on  of  the  q u a n t i t y  A,  we have G(1) =0.  We d i s c a r d  the  l a t t e r  equa l i t y ,  and a long  
wi th  i t  a l s o  the  cond i t i on  F(1) =0,  s e l e c t i n g  A a r b i t r a r i l y .  In t h i s  c a s e ,  the  s y s t e m  of  e q u a t i o n s  (4), (9), (10) 
is  e q u i v a l e n t  to the  Cauchy  p r o b l e m  fo r  the  s y s t e m  (2)-(3) wi th  the  cond i t i ons  

~2 = F =  F' = 0, f2' ~ a, F " ~  A, F '"  = t / v  a t  x =  0 

Such a p r o b l e m  is  un ique ly  s o l v a b l e .  
G(x) d e c r e a s e s  m o n o t o n i c a l l y .  Le t  

:1 = A 0 _ . h ,  ~ = - q 0 +  ~i, G =  Go-f- Gl, 

w h e r e  the  q u a n t i t i e s  wi th  the  s u b s c r i p t  1 a r e  s m a l l ,  A 1 > 0. 

F r o m  (10) we f ind 

~'~ (x - -  t) (l - t=) 
(t t : )  2 

0 

We s h a l l  show tha t ,  wi th  a r i s e  in the  va lue  of A, the  func t ion  

/ = /0  + /1  

~ o ~ l d t  (11) 

D i f f e r e n t i a t i n g  t h i s  e q u a l i t y ,  i t  can  be  shown tha t ,  in s o m e  i n t e r v a l ,  G i < 0, r e g a r d l e s s  of the  s ign  of  
the  funct ion ~ i -  Then,  in t h i s  i n t e r v a l ,  f i  < 0, s i n c e  f i  s a t i s f i e s  the  equa t ion  

F u r t h e r ,  f r o m  (9) it  fo l lows  tha t  

]l' = - 2/o/1 + kfG1 / ( t  - -  x f )  2 (12) 
U0 ~< 0, fl (0) = 0) 

x 

~-l' = -- 2fl~,' t/idx (rid > 0) 
0 

T h e r e f o r e ,  in the  i n t e r v a l  u n d e r  c o n s i d e r a t i o n ,  ~21 > 0. T h i s  i ne qua l i t y  p e r m i t s  b r o a d e n i n g  the  i n t e r -  
v a l  in which  G 1 t a k e s  on n e g a t i v e  v a l u e s  to the  whole  r e g i o n  of e x i s t e n c e  of  a so lu t ion .  

The  mono ton ic  c h a r a c t e r  of  the  d e p e n d e n c e  of  G on A p e r m i t s  a s s e r t i n g  the  s i n g u l a r i t y  of the  r o o t s  
of the  funct ion  G(1), and,  t o g e t h e r  wi th  t h i s ,  a l s o  the  u n i q u e n e s s  of  the  so lu t i on  of  the  a u x i l i a r y  b o u n d a r y -  
va lue  p r o b l e m  wi th  a f i xed  va lue  of  a .  

F u r t h e r ,  l e t  G a g a i n  be d e t e r m i n e d  by  f o r m u l a  (6) wi th  P =1.  We sha l l  show tha t  the  func t ion  ~fl(x ) 
i n c r e a s e s  m o n o t o n i c a l l y  e v e r y w h e r e  wi th  a r i s e  in the  v a l u e  of  the  c o n s t a n t  a .  We se t  

a = a 0 + a i ,  P . =  ~ 0 + ~ i ,  G =  G 0 + G i ,  / = / 0 + h ,  a ~ > 0  

We have 

ol, (i3) 
0 
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(_~L)' = _ 4 t - - ~  ~ t~0~ldt~ (14) 

o 

It follows f rom (13) that,  in some interval ,  ~1 > 0; then, f r o m  (14) it follows that G~ < 0. In this  case  
in accordance  with (12), f l  < 0,and the inequality ~21 > 0 may  again be es tab l i shed  fo r  the whole in terval  of 
ex is tence  of a solution to the problem.  As a consequence of the monotonic c h a r a c t e r  of the dependence of 
~2 on a ,  the equali ty ~(1) =C can be reached  only with a unique value of a,  which comple tes  the proof  of the 
t h e o r e m  of uniqueness for  the case  P = 1. We note that,  for  P < 1, the proof  is somewhat  more  complicated.  

Thus, the work of Ser r in  [7] and its in te rpre ta t ion  given in the p re sen t  a r t ic le  pe rmi t  reso lv ing  the 
pa radox  of [1]. 
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