INTERACTION BETWEEN A VORTEX AND A PLANE

M. A. Gol'dshtik UDC 532,516

Gol'dshtik [1] discussed the problem of the interaction between a vortex and a plane in a viscous liquid
and established that a finite solution of this problem exists only at small Reynolds numbers. This result
has been analyzed, for example, in [2-7]. The present article is devoted to an evaluation of [7], which con-
tains the most complete analytical results. In [7] the concept of the solution was considerably broadened,
as a result of which the results of [1] were found to be a partial case of a broad class of solutions, depend-
ing on an arbitrary parameter and existing with the appropriate choice of this parameter, at any arbitrary
Reynolds numbers.

The statement of the problem consists in the following: a solution is sought to Navier —Stokes equa~
tions of the form
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r = (1)
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where vy, Vg, Vg are the components of the velocity vector in a spherical system of coordinates (R, «, 6);
r=R sin a; x=cos a; o is the azimuthal angle. (Here and in what follows, the notation of Serrin [7] is
used.) After substitution of (1) into the Navier —Stokes equations is obtained a system of ordinary differ-
ential equations
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where v is the coefficient of kinematic viscosity.
For this system of the sixth order five boundary conditions are imposed
QO =FO)=F@©®=0 Q=¢C F{1)=0

By additional transformations we obtain the system
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Here P is a free parameter, whose origin is bound up with the insufficient number of boundary condi-
tions for the system (2)-(3).

In [1] the statement of the problem contained no kind of arbitrariness. Here, the requirement for the
finite nature of the longitudinal velocity vy at the vortical line (x=1) was used as an insufficient condition.
This requirement generated the following conditions: F' (1) is finite; f (1) is finite; G' (1) =0. The latter
equality determined the parameter P = C2,
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The introduction of the parameter P, broadening the class of solutions, requires clarification of its
physical sense. Therefore, it is advisable to clarify the consequence of the introduction of the arbitrary
parameter P, and to furnish an interpretation of the results obtained.

First of all, with an arbitrary value of P, the function vp becomes infinite, having a logarithmic dis-
continuity [7]

Rop ~— 1Y, (1 —P*)k*In(1 — )1 8)
Here P* and k* are normalized values of P and k
P=CP*, k*=|C|k

It must be noted that a similar type of singular solutions for self-similar flows of type (1) is well
known in the theory of viscous jets. For example, in [8] it is shown that the solution of L. D. Landau with
respect to a submerged jet becomes nonsingular. However, the author of this article assumes that singular
solutions do not have physical meanings. The same kind of assertion is made in [9, 10]. However, in the
theory of jets finite solutions exist at any arbitrary values of the parameters, while, for the problem of a
vortex, the condition of boundedness is found to be too severe; therefore, the use of unbounded solutions
may turn out to be justified.

However, if we assume that the parameter P is completely arbitrary, we obtain the result that the
motion of the liquid is conserved, even with the disappearance of the vortex, when C — 0. Actually, this
follows from [7], in which the following equation is discussed:

f4 = — PR/ (1 —2) U+ 2, f(0) =0

which follows from the system (4)-(6) with @ = 0. It is established in [7] that this equation is solvable if
Pk’ < 8.2. We point out that in [7] this equation contains the factor P*k*?, made up of normalized param-
eters; however, it can be' replaced by the factor Pk?, since this product does not depend on C.

Thus, an arbitrary value of P corresponds not to a "pure vortex," but to its superposition on the flow
of the liquid, which is induced by the longitudinal motion of an infinitely thin filament at an infinitely great
velocity. In distinction from motion at a finite velocity, such a filament is found capable of entraining a
viscous liquid. Under these circumstances, still another finite momentum is introduced into the liguid, so
that there is obtained a still more complex superposition of vortex, *filament," and jet.

Since this is so, it is clear that the additional sources of the motion of the liquid demands the assign-
ment of parameters determining their intensity; for example, in locating a linear source or sink at the axis
of a vortex, it is necessary to characterize its assigned strength. The choice of a type of singularity must
be determined by a real physical problem which is such that the solution with singularities under considera-
tion is asymptotic, Specifically, an attempt may be made to interpret solution (1) to the problem of a vortex
as asymptotie for the motion of a viscous liquid due to a rotating needle, when it diameter approaches zero,
while its angular velocity increases infinitely, so that the circulation remains constant, It is clear that for
such a model a singularity of the peripheral velocity, Vs remains inherent. For the other components of the
velocity, vy and v, the requirement of boundedness is inherent, since it is in agreement with the condi-
tions for a limiting transition.

In principle, however, the development of an *induced® singularity as a result of a limiting transition
is not excluded. Therefore, while solutions of the problem with only "™nherent" singularities do not exist,
as occurs in the case under consideration with large Reynolds numbers, as a way out of the situation we can
admit of a combination of an induced singularity and the minimally possible intensity (minimal so that any
excess in it will correspond to another real model, in which this excess intensity is generated naturally
as the result of a limiting transition). The requirement of a minimal singularity of the function vy permits
choosing the parameter P, and finding more exactly the dependence of P*(k*), which can be determined as
follows. With 0 < k < 2.86, P* =1, since in this range there exists a finite solution; with 2.86 < k* <», a
singular jet develops in the liquid near the axis, and the dependence of P *(k*) should correspond to the
curve on Fig. 1 from [7], separating zone B from the region in which solutions do not exist. Such a choice
was proposed in [7], but only for turbulent flow with a self-adjusting virtual viscosity. The establishment
of the dependence of P *(k*) renders the problem uniquely determined. However, for this assertion to hold,
the singularity of the solution with fixed values of P * and k* must be proven. Such a proof was obtained
neither in [1} nor in [7]. It is set out below for the case P* =1 and those values of k* with which a solution
exits.
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From (5), after integration we obtain the relationship

X

Q' = aexp (—~2S]‘dr> 9)

where ais an integration constant subject to determination from the condition (1) =C.
We remove this condition and shall assume that ¢ = Q'(0) is a given number.

Asg is shown in [1], 0 < e < C. Let us consider the system of equations (4), (6), (9). We shall show
that, for any given value of ¢ for which this system is solvable in the interval (0, 1), the solution is unique.
We write (6) in the form

v (x—1) (1 —t2)

G(x) = 2 — dz — 23 T—ap Q2 (1 0)
9

1
Q2dt
(A:1”2S (1+t)2>
0

With such a definition of the quantity A, we have G(1) =0. We discard the latter equality, and along
with it also the condition F(1) =0, selecting A arbitrarily. In this case, the system of equations 4), (9), (10)
is equivalent to the Cauchy problem for the system (2)-(3) with the conditions

Q=F=F =0, Q@ =a, F'=4, F'"=14/v al =0
Such a problem is uniquely solvable. We shall show that, with a rise in the value of A, the function
G(x) decreases monotonically, Let
A=do— i, Q=Q +Q, 6=6+ 6, f=f+h
where the quantities with the subscript 1 are small, A, > 0.
From (10) we find

x
Gr=— duz—4 5 (i“aﬁ_—(%—;—;ﬁ Quudt (11)
0

Differentiating this equality, it can be shown that, in some interval, G, < 0, regardless of the sign of
the function Q4. Then, in this interval, f, <0, since f, satisfies the equation

fif = — 2foft + K2Gi/ (1 — z%)? (12)
(fo<0, f1(0)==0)

Further, from (9) it follows that

X
2

o =—20/\1ds >0
]
Therefore, in the interval under consideration, £, > 0. This inequality permits broadening the inter-
val in which Gy takes on negative values to the whole region of existence of a solution.

The monotonic character of the dependence of G on A permits asserting the singularity of the roots
of the function G(1), and, together with this, also the uniqueness of the solution of the auxiliary boundary-
value problem with a fixed value of a.

Further, let G again be determined by formula (6) with P =1. We shall show that the function Q,(x)
increases monotonically everywhere with a rise in the value of the constant a. We set

e=ayta, R=+N, 6==G0G+GC, f=fi+f «a>0
We have

x

R = (—fj—:— —28 f;dx) Qy (13)
0
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(&_)'2_4 1 —a? S.'lﬂugldti (14)

0

It follows from (13) that, in some interval, Q, > 0; then, from (14) it follows that G, <0. In this case

in accordance with (12), f; <0,and the inequalily Q>0 may again be established for the whole interval of
existence of a solution to the problem. As a consequence of the monotonic character of the dependence of
Q on a, the equality (1) =C can be reached only with a unique value of a, which completes the proof of the
theorem of uniqueness for the case P=1. We note that, for P < 1, the proof is somewhat more complicated.

Thus, the work of Serrin [7] and its interpretation given in the present article permit resolving the

paradox of [1].

1.

418

LITERATURE CITED

M. A. Gol'dshtik, "A paradoxical solution of the Navier—Stokes equations," Prikl. Matem. I Mekhan.,
24, No. 4 (1960).

S. Childres, "Solutions of Euler's equations containing finite eddies,” Phys. Fluids, 9, No. 5 (1966).
G. J. Kidd and G. J. Farris, "Potential vortex flow adjacent to a stationary surface,® Trans. ASME,
Ser. E., J. Appl. Mech., 35, No, 2 (1968).

E. W. Schwiderski, "On axisymmetric vortex flow over a flat surface," Trans. ASME, Ser. E., J.
Appl. Mech., 36, No. 3 (1969).

K. Nanbu, "Vortex flow over a flat surface with suction,® ATAA Journal, 9, No, 8 (1971).

T. 8. Cham, "The laminar boundary layer of a source and vortex flow," Aeronaut. Quart., 22, No. 2
(1971).

J. Serrin, "The swirling vortex,”" Philos. Trans. Roy. Soc. London, Ser. A, 271, No. 1214 (1972).

V. L. Yatseev, "One class of exact solutions of the equations of motion of a viscous liquid,* Zh.
Eksperim. i Tekh. Fiz., 20, No. 11 (1950).

G. Birkhoff and E. Zarant—onello, Jets, Wakes, and Cavities, Academic Press {1957).

M. A. Gol'dshtik and B. A. Silanf’ev, "The theory of submerged jets,® Prikl. Mekhan. i Tekh. Fiz.,
No. 5 (1965).



